Identifying objects -- the ASNI 1 approach John Larmouth ISO and ITU T ASN 1 Rapportaur

j.larmouth@salford.ac.uk

Study Group 17 ASN.1

Note, for best viewing, this presentation needs the Dom Casual and Brush Script fonts.

18

8

Speekers preenble notes

- n (SE)X-rated. Leave now, or shut me up.
- **Olivier Dubuisson or Phil Griffin might be better presenters.**
- But I was part of the Blood Spilling in 1985: Verbose characters or computer-friendly numerics; new RA or re-use existing ones.
- Everyone likes their own identification scheme (particularly in the MoU!). I am NOT selling ASN.1 OIDs as the universal solution for everything, but they ARE used and useful.
- **Dry, boring, not sexy and very simple, with not much to say!**

Study Group 17

Why the rainbon?

- n An infinity of colours
- A secondary rainbow (did you see it?)
- Others to an infinity of internal reflections
- Not really relevant, but it is a nice picture!
- But an infinity of arcs and an infinity of depth is what OIDs are about

The ASN 1 approach to identification

- n One of many, many approaches
- n Is basically very simple
- **Has proved useful in many environments**
- **Can be used without using ASN.1**
- In Unfortunately, it is hard to present it in a sexy way!

But I will try!

There are many approaches to object identification

- n Bar codes are well known
- n IP addresses are a binary form
- n URLs are well-known
- n URNs are less well-known
- n NSAP addresses are unused today
- n UUIDs are important too

Study Group 17

What are the differences?

- Some are character-based, some are binary
- Some need central allocation, others have various levels of hierarchy
- Some are fixed length, others are variable length
- **To some extent it is horses for courses**
- They all are sisters!

Are OIDs new to the NbU MG?

n No!

Presented to the Geneva Business Objects Summit in November 2000 by William Lyons

n Banking.ppt

- A hierarchical structure of registration authorities
- n An object identifier tree
- Arcs are numbered (zero to infinity)
- Infinitely many arcs from each node
- An RA allocates arcs beneath its node to subordinate RAs, and so on, to an infinite depth

Objects are identified by the path from the root to a leaf (or intermediate node) *Study Group 17*

A small part of the OID tree - Get Hung

Notations and encodings of OIDs

- Note: Not
- Simplest character encoding (used for XML and other Internet protocols) is (for example) 1.0.8571.2.29
- More readable (for human consumption) is

{iso standard 8571 abstract-syntax (2) pci (29) }

n Or

{itu-t recommendation x 1081 pictures (0) [conardb(3)]

Picture follows

The binery encoding

- n Roughly one octet per component
- **Uses bit 8 as a more bit**
- **Top two components handled specially**
- n {0 0} to {0 39} encodes into one octet only
- n {10} to {139} encodes into one octet only
- n {20} to {247} encodes into one octet only
- n {2 48} on will use two or more octets

And now the picture!

The Editor's version

The official version!

But let's see the (two) videos!

- Not much to do with ASN.1 Object Identifiers, but I think interesting!
- Part of the work of ITU-T SG17
- First an introduction by Leonardo
 himself, then a review of the
 Recommendation
- (Click on the black display to start the video, and when finished click outside the video area to move to the next slide)
 Study Group 17

But one more picture first

Here is an OASIS of tranquillity:

{oasis (2) tech-committees (45)
 xcbf(20) standard (0) version (2002)}
or 2.45.20.0.2002
or <xxx xmlns="urn:oid:2.45.20.0.2002">...<\xxx>

Artificial - not applied for yell

Study Group 17

Facilitation of trade:

{un-cefact(2) edi(50) invoice(0) version-2004(2) } or 2.50.0.2

Ariticial - not employ for you or <xxx xmlns="urn:oid:2.50.0.2">...<\xxx>

n Face recognition:

{iso standard 19794 part(5) version(1) } or 1.0.19794.5.1

or <xxx xmlns="urn:oid:1.0.19794.5.1">...<\xxx>

ITUT TSAG Reconnendation

- Was requested to devise a uniform approach for XML namespace specification across all ITU-T Recommendations
- Asked SG17 for advice
- Was advised to recommend the use of the form:

<xxx xmlns="urn:oid:0.0.6.">...<\xxx>

Study Group 17

What about UUIDs?

- n Universally unique identifiers
- Note: Not
- n ISO/IEC 9834-8 | ITU-T Rec X.667
- Can self-generate OIDs at the rate of about 10 million per second
- **n** Unambiguous over the next 2000 years
- **Can optionally register them**
 - OID is 2.25.xxx.....

Time for another picture! OIDs provide levels in levels

All very good, but are they used?

- Not really very much? Depends on comparators!
- Only 59,000 known to be allocated! Certainly many more in reality.
- **Telephone numbers will do better!**
- But in their field, OIDs have had a pretty good take-up
 - See http://oid.elibel.tm.fr

Security algorithm uses of OIDs

- **This is one area where OIDs are universally used.**
- **use a Digital Certificate, and you use an OID.**
 - Secure Hash Algorithm 2 (SHA2)
 { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) hashAlgs(2)
 - RSA Encryption { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 1 1 }

- **Many ITU-T Recommendations**
- **Biometrics and other ISO Standards**
- Many US ANSI X.9 specifications
- **us Banking specifications**
- n UPU and international carrier parcel tracking
- **n 3GPP Mobile phones**

Not as widespread as bar-codes, but heavily used in computer communications protocols *Study Group 17*

- n Goto http://oid.elibel.tm.fr
- **Number of OIDs**
- **Details about an OID**
- Provide details about a (new)
 allocation of an OID
- **Much additional information**

The Elibel OID page

- Web services (SOAP and all that) support to register or obtain UUID-based OIDs
- **n** Fast Web services support
- Courtesy of the ITU-T TSB, France Telecom, Sun Microsystems, and OSS Nokalva

- Formally, contact the ITU-T TSB or ISO/IEC SC6 Secretariat, for the attention of the ASN.1 Rapporteur, in both cases.
- n Informally, contact

MbU MG Recommendations?

- ASN.1 object identifiers should be considered alongside other existing identification mechanisms, particularly when there is a need for:
 - simple globally unambiguous identification
 - allocation of identifiers by many organizations
 - hierarchical not centralized allocation mechanisms
 - compact binary encodings of the ID

How to end?

- OIDs provide a standardised, distributed, low admin overhead, flexible, hierarchical system for object identification, with few restrictions
- They provide efficient binary, simple numeric, and human readable representations
- **Is it too much to say that they are a shining light?**

